221 lines
7.0 KiB
Python
221 lines
7.0 KiB
Python
from fastapi import FastAPI, Request, HTTPException
|
|
from fastapi.middleware.cors import CORSMiddleware
|
|
from fastapi.middleware.trustedhost import TrustedHostMiddleware
|
|
from fastapi.responses import JSONResponse
|
|
import time
|
|
import logging
|
|
from contextlib import asynccontextmanager
|
|
|
|
from app.core.config import settings
|
|
from app.db.database import engine
|
|
from app.db.models import Base
|
|
|
|
# Import routers
|
|
from app.api.auth import router as auth_router
|
|
# from app.api.files import router as files_router
|
|
# from app.api.chat import router as chat_router
|
|
# from app.api.reminders import router as reminders_router
|
|
# from app.api.search import router as search_router
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@asynccontextmanager
|
|
async def lifespan(app: FastAPI):
|
|
"""Lifespan context manager for startup and shutdown events"""
|
|
# Startup
|
|
logger.info("Starting aPersona backend...")
|
|
|
|
# Create database tables
|
|
Base.metadata.create_all(bind=engine)
|
|
logger.info("Database tables created")
|
|
|
|
# Initialize AI components
|
|
try:
|
|
from ai_core.embeddings.embedding_service import embedding_service
|
|
from ai_core.rag.vector_store import vector_store
|
|
from ai_core.llm.ollama_client import ollama_client
|
|
|
|
# Test Ollama connection
|
|
is_healthy = await ollama_client.check_health()
|
|
if is_healthy:
|
|
logger.info("Ollama connection established")
|
|
else:
|
|
logger.warning("Ollama service not available - some features may be limited")
|
|
|
|
# Initialize vector store
|
|
stats = vector_store.get_collection_stats()
|
|
logger.info(f"Vector store initialized: {stats}")
|
|
|
|
# Test embedding service
|
|
embedding_info = embedding_service.get_model_info()
|
|
logger.info(f"Embedding service ready: {embedding_info}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to initialize AI components: {e}")
|
|
|
|
yield
|
|
|
|
# Shutdown
|
|
logger.info("Shutting down aPersona backend...")
|
|
try:
|
|
await ollama_client.close()
|
|
except:
|
|
pass
|
|
|
|
|
|
# Create FastAPI app
|
|
app = FastAPI(
|
|
title=settings.APP_NAME,
|
|
version=settings.APP_VERSION,
|
|
description="AI-powered personal assistant that works completely offline",
|
|
lifespan=lifespan
|
|
)
|
|
|
|
# Add CORS middleware
|
|
app.add_middleware(
|
|
CORSMiddleware,
|
|
allow_origins=settings.BACKEND_CORS_ORIGINS,
|
|
allow_credentials=True,
|
|
allow_methods=["*"],
|
|
allow_headers=["*"],
|
|
)
|
|
|
|
# Add trusted host middleware for security
|
|
app.add_middleware(
|
|
TrustedHostMiddleware,
|
|
allowed_hosts=["localhost", "127.0.0.1", "*.localhost"]
|
|
)
|
|
|
|
|
|
# Request timing middleware
|
|
@app.middleware("http")
|
|
async def add_process_time_header(request: Request, call_next):
|
|
"""Add processing time to response headers"""
|
|
start_time = time.time()
|
|
response = await call_next(request)
|
|
process_time = time.time() - start_time
|
|
response.headers["X-Process-Time"] = str(process_time)
|
|
return response
|
|
|
|
|
|
# Global exception handler
|
|
@app.exception_handler(Exception)
|
|
async def global_exception_handler(request: Request, exc: Exception):
|
|
"""Global exception handler for unhandled errors"""
|
|
logger.error(f"Unhandled error for {request.url}: {exc}")
|
|
return JSONResponse(
|
|
status_code=500,
|
|
content={
|
|
"detail": "Internal server error",
|
|
"error": str(exc) if settings.DEBUG else "An unexpected error occurred"
|
|
}
|
|
)
|
|
|
|
|
|
# Health check endpoint
|
|
@app.get("/health")
|
|
async def health_check():
|
|
"""Health check endpoint"""
|
|
try:
|
|
from ai_core.llm.ollama_client import ollama_client
|
|
ollama_healthy = await ollama_client.check_health()
|
|
|
|
return {
|
|
"status": "healthy",
|
|
"app_name": settings.APP_NAME,
|
|
"version": settings.APP_VERSION,
|
|
"services": {
|
|
"database": "healthy",
|
|
"ollama": "healthy" if ollama_healthy else "unhealthy",
|
|
"embeddings": "healthy",
|
|
"vector_store": "healthy"
|
|
}
|
|
}
|
|
except Exception as e:
|
|
logger.error(f"Health check failed: {e}")
|
|
return JSONResponse(
|
|
status_code=503,
|
|
content={
|
|
"status": "unhealthy",
|
|
"error": str(e)
|
|
}
|
|
)
|
|
|
|
|
|
# Root endpoint
|
|
@app.get("/")
|
|
async def root():
|
|
"""Root endpoint"""
|
|
return {
|
|
"message": f"Welcome to {settings.APP_NAME}",
|
|
"version": settings.APP_VERSION,
|
|
"description": "AI-powered personal assistant - fully local and private",
|
|
"endpoints": {
|
|
"health": "/health",
|
|
"docs": "/docs",
|
|
"api": settings.API_V1_STR
|
|
}
|
|
}
|
|
|
|
|
|
# System info endpoint
|
|
@app.get(f"{settings.API_V1_STR}/system/info")
|
|
async def get_system_info():
|
|
"""Get system information and capabilities"""
|
|
try:
|
|
from ai_core.embeddings.embedding_service import embedding_service
|
|
from ai_core.rag.vector_store import vector_store
|
|
from ai_core.llm.ollama_client import ollama_client
|
|
|
|
# Get AI service information
|
|
embedding_info = embedding_service.get_model_info()
|
|
vector_stats = vector_store.get_collection_stats()
|
|
available_models = await ollama_client.list_models()
|
|
|
|
return {
|
|
"app_info": {
|
|
"name": settings.APP_NAME,
|
|
"version": settings.APP_VERSION,
|
|
"debug": settings.DEBUG
|
|
},
|
|
"ai_services": {
|
|
"embedding_model": embedding_info,
|
|
"vector_store": vector_stats,
|
|
"available_llm_models": available_models,
|
|
"current_llm_model": settings.DEFAULT_LLM_MODEL
|
|
},
|
|
"capabilities": {
|
|
"file_processing": [
|
|
"PDF", "DOCX", "TXT", "Images (OCR)",
|
|
"Markdown", "PNG", "JPEG", "GIF"
|
|
],
|
|
"ai_features": [
|
|
"Semantic search", "Auto-categorization",
|
|
"Smart reminders", "Personalized responses",
|
|
"Learning from interactions"
|
|
]
|
|
}
|
|
}
|
|
except Exception as e:
|
|
logger.error(f"Failed to get system info: {e}")
|
|
raise HTTPException(status_code=500, detail="Failed to retrieve system information")
|
|
|
|
|
|
# Include API routers
|
|
app.include_router(auth_router, prefix=f"{settings.API_V1_STR}/auth", tags=["authentication"])
|
|
# app.include_router(files_router, prefix=f"{settings.API_V1_STR}/files", tags=["files"])
|
|
# app.include_router(chat_router, prefix=f"{settings.API_V1_STR}/chat", tags=["chat"])
|
|
# app.include_router(reminders_router, prefix=f"{settings.API_V1_STR}/reminders", tags=["reminders"])
|
|
# app.include_router(search_router, prefix=f"{settings.API_V1_STR}/search", tags=["search"])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import uvicorn
|
|
uvicorn.run(
|
|
"app.main:app",
|
|
host="0.0.0.0",
|
|
port=8000,
|
|
reload=settings.DEBUG,
|
|
log_level="info" if not settings.DEBUG else "debug"
|
|
) |