from pydantic_settings import BaseSettings from typing import List import os from pathlib import Path class Settings(BaseSettings): # App Configuration APP_NAME: str = "aPersona" APP_VERSION: str = "1.0.0" DEBUG: bool = True API_V1_STR: str = "/api/v1" # Security SECRET_KEY: str = "your-secret-key-change-in-production" ACCESS_TOKEN_EXPIRE_MINUTES: int = 60 * 24 * 8 # 8 days ALGORITHM: str = "HS256" # Database DATABASE_URL: str = "sqlite:///./apersona.db" # File Storage UPLOAD_DIR: Path = Path("../data/uploads") PROCESSED_DIR: Path = Path("../data/processed") VECTOR_DB_DIR: Path = Path("../data/vectors") MAX_FILE_SIZE: int = 100 * 1024 * 1024 # 100MB # AI Configuration OLLAMA_BASE_URL: str = "http://localhost:11434" DEFAULT_LLM_MODEL: str = "mistral" EMBEDDING_MODEL: str = "all-MiniLM-L6-v2" VECTOR_COLLECTION_NAME: str = "apersona_documents" # CORS BACKEND_CORS_ORIGINS: List[str] = [ "http://localhost:3000", "http://localhost:5173", "http://127.0.0.1:3000", "http://127.0.0.1:5173", ] # Auto-Learning Configuration LEARNING_UPDATE_INTERVAL: int = 3600 # 1 hour in seconds MIN_INTERACTIONS_FOR_LEARNING: int = 10 FEEDBACK_WEIGHT: float = 0.1 def __init__(self, **kwargs): super().__init__(**kwargs) # Create directories if they don't exist for directory in [self.UPLOAD_DIR, self.PROCESSED_DIR, self.VECTOR_DB_DIR]: directory.mkdir(parents=True, exist_ok=True) class Config: env_file = ".env" settings = Settings()